Proliferation-independent regulation of organ size by Fgf/Notch signaling
نویسندگان
چکیده
Organ morphogenesis depends on the precise orchestration of cell migration, cell shape changes and cell adhesion. We demonstrate that Notch signaling is an integral part of the Wnt and Fgf signaling feedback loop coordinating cell migration and the self-organization of rosette-shaped sensory organs in the zebrafish lateral line system. We show that Notch signaling acts downstream of Fgf signaling to not only inhibit hair cell differentiation but also to induce and maintain stable epithelial rosettes. Ectopic Notch expression causes a significant increase in organ size independently of proliferation and the Hippo pathway. Transplantation and RNASeq analyses revealed that Notch signaling induces apical junctional complex genes that regulate cell adhesion and apical constriction. Our analysis also demonstrates that in the absence of patterning cues normally provided by a Wnt/Fgf signaling system, rosettes still self-organize in the presence of Notch signaling.
منابع مشابه
Localization of Putative Stem Cells in Dental Epithelium and Their Association with Notch and Fgf Signaling
The continuously growing mouse incisor is an excellent model to analyze the mechanisms for stem cell lineage. We designed an organ culture method for the apical end of the incisor and analyzed the epithelial cell lineage by 5-bromo-2'-deoxyuridine and DiI labeling. Our results indicate that stem cells reside in the cervical loop epithelium consisting of a central core of stellate reticulum cell...
متن کاملFGF-dependent Notch signaling maintains the spinal cord stem zone.
Generation of the spinal cord relies on proliferation of undifferentiated cells located in a caudal stem zone. Although fibroblast growth factor (FGF) signaling is required to maintain this cell group, we do not know how it controls cell behavior in this context. Here we characterize an overlooked expression domain of the Notch ligand, Delta1, in the stem zone and demonstrate that this constitu...
متن کاملMechanisms of spinal cord injury regeneration in zebrafish: a systematic review
Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...
متن کاملFGF signaling: diverse roles during cochlear development
Mammalian inner ear comprises of six sensory organs; cochlea, utricle, saccule, and three semicircular canals. The cochlea contains sensory epithelium known as the organ of Corti which senses sound through mechanosensory hair cells. Mammalian inner ear undergoes series of morphogenesis during development beginning thickening of ectoderm nearby hindbrain. These events require tight regulation of...
متن کاملFGF and Notch signaling in sensory neuron formation: A multifactorial approach to understanding signaling pathway hierarchy
The ophthalmic trigeminal (opV) placode exclusively gives rise to sensory neurons, making it a good model to study the molecular regulation of sensory neurogenesis. A number of signaling pathways including Wnt, PDGF, FGF, and Notch have been shown to be involved in the process of opV placode cell development. However, the regulatory relationships between these signaling pathways in placode cell...
متن کامل